This pharmacogenetic information is based on best evidence compiled from guidelines and databases including FDA, PharmGKB, Clinical Pharmacogenetics Implementation Consortium (CPIC) and Dutch Pharmacogenetics Working Group (DPWG).
Please refer to the Methods, Limitations, and Liability Disclaimer at the end of this report.

Medication Summary

The Medication Summary is a list of medications with evidence for the use of pharmacogenetic information, organized by their therapeutic area. Medications are further organized based on drug-gene interactions. Health care providers should consider the information contained in the Medication Report before making any clinical or therapeutic decisions.

A Mild or no known interaction
2 Moderate gene-drug interaction
3 Serious gene-drug interaction; should be evaluated carefully and alternative medications should be considered

Analgesia	...Autoimmune	Gastroenterology	...Mental Health
A -	1 -	1 -	1
Alfentanil	Tacrolimus	Dronabinol	Chlordiazepoxide
Carisoprodol	Cancer	Metoclopramide	Clobazam
Celecoxib	1 -	Ondansetron	Clonazepam
Codeine	Erdafitinib	2	Clorazepate
Fentanyl	Tamoxifen	Dexlansoprazole	Desipramine
Flurbiprofen	Cardiovascular	Lansoprazole	Diazepam
Hydrocodone		Omeprazole	Donepezil
Ibuprofen		Pantoprazole	Flurazepam
Meloxicam	Atorvastatin	Infection	Fluvoxamine
Morphine	Carvedilol		Lorazepam
Piroxicam	Clopidogrel	2	Nitrazepam
Tenoxicam	Flecainide	Efavirenz	Nortriptyline
Tramadol	Fluvastatin	Voriconazole	Oxazepam
2	Lovastatin	Mental Health	Paroxetine
Imipramine	Metoprolol		Phenytoin
Autoimmune	Nebivolol	Alprazolam	Protriptyline
	Pitavastatin	Amoxapine	Risperidone
Cevimeline	Pravastatin	Amphetamine	Temazepam
Cyclosporine	Propafenone	Aripiprazole lauroxil	Triazolam
Siponimod	Propranolol	Atomoxetine	Venlafaxine
	Simvastatin		
	2		Amitriptyline

...Mental Health	Neurology	Other
2 -	1 -	1
Aripiprazole	Brivaracetam	Avatrombopag
Asenapine	Clobazam	Elagolix
Brexpiprazole	Clonazepam	Eliglustat
Cariprazine	Desipramine	Eltrombopag
Chlorpromazine	Deutetrabenazine	Flibanserin
Citalopram	Diazepam	Lofexidine
Clomipramine	Donepezil	Meclizine
Clozapine	Fosphenytoin	Oral contraceptives
Doxepin	Galantamine	
Escitalopram	Nortriptyline	
Flupentixol	Phenytoin	
Fluphenazine	Tetrabenazine	
Haloperidol	Valbenazine	
Iloperidone	Venlafaxine	
Imipramine	2 -	
Loxapine	Amitriptyline	
Lurasidone	Rheumatology	
Methotrimeprazine	1	
Molindone	Celecoxib	
Olanzapine Paliperidone	Flurbiprofen	
Perphenazine	Ibuprofen	
Pimozide	Meloxicam	
Prochlorperazine	Piroxicam	
Promethazine	Tenoxicam	
Quetiapine	Urology	
Sertraline	1	
Thioridazine	Darifenacin	
Trifluoperazine	Fesoterodine	
Trimipramine	Mirabegron	
Ziprasidone	Tamsulosin	
Zuclopenthixol	Tolterodine	

Uverview

This pharmacogenetic information is based on best evidence compiled from guidelines and databases including FDA, PharmGKB, Clinical Pharmacogenetics Implementation Consortium (CPIC) and Dutch Pharmacogenetics Working Group (DPWG).

This document includes:

1. Medication Summary: A list of medications organized by their therapeutic area of use and sorted based on their drug-gene interaction severity.
2. Medication Report: Provides information about factors affecting medication response.
3. Guidelines: A table of guidelines used to produce each interpretation.
4. References: Sources of information used to create this report.
5. Laboratory Report: Contains genetic test results in a technical table.

TreatGx and ReviewGx are clinical decision support tools that expand on the contents on this report.

TreatG:

TreatGx is clinical decision support software for precision prescribing that identifies condition-specific medication options based on multiple patient factors.

ReviewG:

Review $G x$ uses patient factors including pharmacogenetics to highlight medication safety issues, help optimize medications, and identify deprescribing opportunities.

Components of the Medication Report

For all medications, clinical factors, medical conditions, lab values, drug-gene and drug-drug interactions may contribute to medication response and should be evaluated for each patient. The kidney and liver icon notations are intended for informational purposes only. The patient's kidney/liver function are not used for the purposes of displaying this information, and the potential interactions for that specific medication may not apply. TreatGx and ReviewGx help integrate this information to support precision prescribing and comprehensive medication management. The final genotype/phenotype call is at the discretion of the laboratory director. Medication changes should only be initiated at the discretion of the patient's healthcare provider after a full assessment.

Example:

Source/Evidence for Drug-Gene Interactions:

For each medication, a source is listed for each drug-gene interaction. This report prioritizes guidance from CPIC if the drug-gene pair is assigned a CPIC Level of A or B. This is the threshold that CPIC defines as having sufficient evidence for at least one prescribing action to be recommended. See cpicpgx.org/prioritization for a full explanation of CPIC Levels for Genes/Drugs.
Pharmacogenetic information from FDA-approved drug labels or the FDA Table of Pharmacogenetic Associations (https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations) is included when available.
If there is no CPIC guideline (level A or B) or FDA guidance, other sources may be referenced, such as DPWG guidelines, PharmGKB clinical annotations, and in some instances, clinical studies. See https://www.pharmgkb.org/page/clinAnnLevels for a full explanation of PharmGKB levels of evidence. Use of any of this information is at the discretion of the health professional.

* Other clinical factors. medical conditions and drua-drua interactions mav contribute to medication response.
incite $\left.\right|_{\mid} ^{\mid}$health
Implication: CYP2D6 poor metabolizer: greatly reduced metabolism of Codeine may result in decreased response
3 Avoid Codeine use

Medication Report

The Medication Report provides information on how pharmacogenetic results affect each medication.
Use TreatGx and ReviewGx to explore personalized medication treatment options, dosing information and medication optimization.

Alfentanil	Phenotype	Genetic Test	Results	Source/Evidence
Alfenta	Typical response	OPRM1 rs1799971 A/A PharmGKB 3 OPRM1 alleles indicate a typical response to Alfentanil		
ReviewG\%	Implication: OPRM1 allele			
Alprazolam	Phenotype	Genetic Test	Results	Source/Evidence
Xanax	Normal metabolizer	CYP2C9	*1/*1	$\begin{aligned} & \text { Case-control } \\ & \text { studies }^{13} \end{aligned}$
ReviewG\%	Implication:	indicate typical risk of Alprazolam-related falls		
Amitriptyline	Phenotype	Genetic Test	Results	Source/Evidence
Elavil	Normal metabolizer	CYP2D6	$*_{1 / *}{ }^{1}$	CPIC A ${ }^{16}$;FDA PGx
Levate				$\text { Table }^{35}$
TreatG\%	Rapid metabolizer	CYP2C19	*1/*17	CPIC A ${ }^{16}$
ReviewG\%	Implication: $\begin{array}{ll}\text { CYP2C19 rapid } \\ \text { may affect re }\end{array}$	metabolizer: increased metabolism of Amitriptyline ponse or adverse drug reactions		
	2 Consider an alternative drug not predominantly metabolized by CYP2C19			
Amoxapine	Phenotype	Genetic Test	Results	Source/Evidence
ReviewG\%	Normal metabolizer	CYP2D6	*1/*1	FDA PGx Table ${ }^{35}$
	Implication:	do not indicate changes from recommended dose		
Amphetamine	Phenotype	Genetic Test	Results	Source/Evidence
Adzenys	Normal metabolizer	CYP2D6	*1/*1	FDA PGx Table ${ }^{35}$
TreatG ${ }_{\circ}$ ReviewG:	Implication: CYP2D6 all	do not indicate chan	es from r	ed dose
Aripiprazole	Phenotype	Genetic Test	Results	Source/Evidence
Abilify	Normal metabolizer	CYP2D6	*1/*1	DPWG (PharmGKB
Aristada TreatG:\%	Increased risk of adverse drug reactions			$\begin{aligned} & \text { 1A) }{ }^{8} \text {;FDA PGx } \\ & \text { Table } 35 \end{aligned}$
ReviewG:\%		ANKK1 rs1800497	A/G	PharmGKB 3
	Implication: $\begin{array}{ll}\text { ANKK1 alle } \\ & \text { CYP2D6 all }\end{array}$	ndicate an increased risk of hyperprolactinemia		
		do not indicate chan	es from r	ed dose
Aripiprazole lauroxil	Phenotype	Genetic Test	Results	Source/Evidence
Aristada	Normal metabolizer	CYP2D6	*1/*1	FDA PGx Table ${ }^{35}$
ReviewG:\%	Implication: CYP2D6 alle	do not indicate chan		ded dose

incite $\left.\right|_{1} ^{\mid!}$health

Atomoxetine	Phenotype	Genetic Test	Results	Source/Evidence
Strattera	Normal metabolizer	CYP2D6 (Activity	$* 1 / * 1$	CPIC A4;FDA PGx
TreatG		Score)	Table	
ReviewG	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		

Atorvastatin	Phenotype	Genetic Test	Results	Source/Evidence
Lipitor	Normal function	SLCO1B1	$* 1 / * 1$	CPIC A ${ }^{5}$;FDA PGx
TreatG $\%$	Implication:	SLCO1B1 alleles indicate typical exposure to Atorvastatin		

Avatrombopag	Phenotype	Genetic Test	Results	Source/Evidence
Doptelet ReviewG:	Normal metabolizer	Implication:	CYP2C9 alleles do not indicate changes from recommended dose Table ${ }^{35}$	
Brexpiprazole	Phenotype		Genetic Test	Results

Brivaracetam	Phenotype	Genetic Test	Results	Source/Evidence
Briviact	Rapid metabolizer	CYP2C19	$* 1 / * 17$	FDA PGx Table ${ }^{35}$
Brivlera	Implication:	CYP2C19 alleles do not indicate changes from recommended dose		

ReviewG:\%

Implication: CYP2C9 alleles indicate typical risk of Bromazepam-related falls

Carvedilo	Phenotype	Genetic Test	Results	Source/Evidence
Coreg	Normal metabolizer	CYP2D6	$* 1 / * 1$	FDA PGx Table ${ }^{35}$
	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		

TreatG:
ReviewG $\%$

Celecoxib	Phenotype	Genetic Test	Results	Source/Evidence
Celebrex - 0	Normal metabolizer	CYP2C9 (Star Alleles) *1/*1		$\begin{aligned} & \text { CPIC A }{ }^{32} \text {;FDA PGx } \\ & \text { Table }{ }^{35} \end{aligned}$
\square	Implication: C	CYP2C9 alleles do not indicate changes from recommended dose		
TreatG: ReviewG:				
Cevimeline	Phenotype	Genetic Test	Results	Source/Evidence
Evoxac	Normal metabolizer	CYP2D6	*1/*1	FDA PGx Table ${ }^{35}$
ReviewG\%	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		

Chlordiazepoxide	Phenotype	Genetic Test	Results	Source/Evidence
Librium ReviewG $\%$	Normal metabolizer	CYP2C9	$* 1 / * 1$	Case-control
	Implication:	CYP2C9 alleles indicate typical risk of Chlordiazepoxide-related falls		

Chlorpromazine	Phenotype	Genetic Test	Results	Source/Evidence				
TreatG $\% \%$	Increased risk of adverse drug ANKK1 rs1800497	A / G	PharmGKB 3					
ReviewG $\% \%$	reactions				\quad	Implication:	ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia	
:---	:---	:---						

Citalopram	Phenotype	Genetic Test	Results	Source/Evidence
Celexa	Rapid metabolizer	CYP2C19	${ }^{*} 1 / * 17$	CPIC A ${ }^{15}$;FDA PGx
			Table ${ }^{35}$	

TreatG $\%$ ReviewG\%

CYP2C19 rapid metabolizer: increased metabolism of Citalopram to less active compounds
Lower plasma concentrations of active drug may reduce response
Consider an alternative drug not predominantly metabolized by CYP2C19

Implication:	CYP2C19 rapid metabolizer: increased metabolism of Citalopra to less active compounds
	Lower plasma concentrations of active drug may reduce respon
2	Consider an alternative drug not predominantly metabolized by

－－	－ucypu	ひいルしル ルコ	ハーงй	
Onfi	Rapid metabolizer	CYP2C19	＊1／＊17	FDA PGx Table ${ }^{35}$
Sympazan	Normal metabolizer	CYP2C9	＊1／＊1	Case－control studies ${ }^{13}$
ReviewG：\％	Implication：CYP2C9 and CYP2C19 alleles indicate a typical response to Clobazam			
Clomipramine	Phenotype	Genetic Test	Results	Source／Evidence
Anafranil ReviewG：\％	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	$\begin{aligned} & \text { CPIC } A^{16} \text {;FDA PGx } \\ & \text { Table }{ }^{35} \end{aligned}$
	Rapid metabolizer	CYP2C19	＊1／＊17	CPIC A ${ }^{16}$
	Implication： C	CYP2C19 rapid metabolizer：increased metabolism of Clomipramine may affect response or adverse drug reactions		
	2．Consider an alternative drug not predominantly metabolized by CYP2C19			

Clonazepam	Phenotype	Genetic Test	Results	Source／Evidence
Klonopin	Normal metabolizer	CYP2C9	${ }^{*} 1 /{ }^{*} 1$	Case－control
Rivotril				studies ${ }^{13}$

TreatG \％

Clopidogrel	Phenotype	Genetic Test	Results	Source／Evidence
Plavix TreatG $\%$ ReviewG：	Rapid metabolizer	Implication：	CYP2C19 alleles do not indicate changes from recommended dose	
Clorazepate	Phenotype		Genetic Test	Results

incite $\left.\right|_{1} ^{!}$health

PATIENT INFORMATION
NAME：John Doe
DOB：01／Feb／1958
SEX AT BIRTH：Male

SPECIMEN DETAILS
BARCODE：IHM＿002
SAMPLE ID：Doe 001
TYPE：Buccal Swab
COLLECTED：20／Nov／2023

ーyレルコアטי＂ル	－＇儿口ucyp	いいルいル ルコ	いいつuto	
Neoral	Poor metabolizer	CYP3A5	＊3／＊3	PharmGKB 3
Sandimmune ReviewG：\％	Implication：	do not indicat	from	ded dose

Darifenacin	Phenotype	Genetic Test	Results	Source／Evidence
Enablex	Normal metabolizer	CYP2D6	${ }^{1 / *} 1$	FDA PGx Table ${ }^{35}$
	Implication：	CYP2D6 alleles do not indicate changes from recommended dose		

TreatG：
ReviewG\％

Desipramine	Phenotype	Genetic Test	Results	Source／Evidence
Norpramin TreatG ReviewG	Normal metabolizer	Implication：	CYP2D6 alleles do not indicate changes from recommended dose	
			CYP2D6	${ }^{*} 1 / * 1$

Dexlansoprazole	Phenotype	Genetic Test	Results	Source／Evidence
Dexilant	Rapid metabolizer	CYP2C19	$*_{1 / * 17}$	CPIC A 22 ；FDA PGx
				Table 35

TreatG：
ReviewG\％
Implication：Optional CPIC recommendation：Initiate standard starting daily dose．Consider increasing dose by 50－100\％of the standard dose for the treatment of Helicobacter pylori infection and erosive esophagitis．

Diazepam	Phenotype	Genetic Test	Results	Source／Evidence
Diastat	Rapid metabolizer	CYP2C19	$* 1 / * 17$	FDA PGx Table
Valium	Normal metabolizer	CYP2C9	$* 1 / * 1$	Case－control
TreatG：	Implication：	CYP2C9 alleles indicate typical risk of Diazepam－related falls ${ }^{35}$		
ReviewG：			CYP2C19 alleles do not indicate changes from recommended dose	

Donepezil	Phenotype	Genetic Test	Results	Source／Evidence
Aricept	Normal metabolizer	CYP2D6	${ }^{1 / 1 / 1}$	FDA PGx Table ${ }^{35}$
TreatG $\%$	Implication：	CYP2D6 alleles do not indicate changes from recommended dose		
ReviewG $\% \%$				

Doxepin	Phenotype	Genetic Test	Results	Source／Evidence
Silenor Sinequan	Normal metabolizer	CYP2D6	$* 1 / * 1$	CPIC A ${ }^{16}$ ；FDA PGx
	Rapid metabolizer	CYP2C19	$* 1 / * 17$	Table ${ }^{35}$

TreatG\％ ReviewG：

Implication：CYP2C19 rapid metabolizer：increased metabolism of Doxepin may affect response or adverse drug reactions

Consider an alternative drug not predominantly metabolized by CYP2C19

Flupentixol	Phenotype	Genetic Test	Results	Source/Evidence
Fluanxol	Increased risk of adverse drug	ANKK1 rs1800497	A/G	PharmGKB 3
reactions				

TreatG:
ReviewG:

Fluphenazine	Phenotype	Genetic Test	Results	Source/Evidence
Modecate	Increased risk of adverse drug reactions	ANKK1 rs1800497	A/G	PharmGKB 3
TreatG $\%$ ReviewG $\%$	Implication:	ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia		
Flurazepam	Phenotype		Genetic Test	Results

incite, health
CYP2C9 alleles indicate typical risk of Flurazepam-related falls

PATIENT INFORMATION
NAME：John Doe
DOB：01／Feb／1958
SEX AT BIRTH：Male

SPECIMEN DETAILS
BARCODE：IHM＿002
SAMPLE ID：Doe 001
TYPE：Buccal Swab
COLLECTED：20／Nov／2023

	－＇儿，水ypu	ひールール いつ	ハーフиレ	ひールルしレッルいル
Ansaid	Normal metabolizer	CYP2C9（Star Alleles）＊1／＊1		CPIC A ${ }^{32}$ ；FDA PGx
0				Table ${ }^{35}$
TreatG\％	Implication：	CYP2C9 alleles do not indicate changes from recommended dose		
ReviewG：				
Fluvastatin	Phenotype	Genetic Test	Results	Source／Evidence
Lescol	Normal metabolizer	CYP2C9	＊1／＊1	CPIC A ${ }^{5}$
\square	Normal function	SLCO1B1	＊1／＊1	CPIC A^{5}
TreatG\％	Implication：	s indicate typi	sure to	
ReviewG：\％		indicate typica	ure to Flu	
		ribing desired guidelines	dose and	ed on

Fluvoxamine	Phenotype	Genetic Test	Results	Source／Evidence
Luvox	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	CPIC B ${ }^{15}$ ；FDA PGx
			Table ${ }^{35}$	

TreatG：
Implication：CYP2D6 alleles do not indicate changes from recommended dose
ReviewG：

Fosphenytoin	Phenotype	Genetic Test	Results	Source／Evidence
Cerebyx	Normal metabolizer	CYP2C9	$* 1 / * 1$	CPIC A
Implication：	CYP2C9 normal metabolizer：normal metabolism of Fosphenytoin			
ReviewG $\%$			CYP2C9 less active compounds	

Galantamine	Phenotype	Genetic Test	Results	Source／Evidence
Razadyne	Normal metabolizer	CYP2D6	${ }^{1 / * 1}$	FDA PGx Table ${ }^{35}$
	Implication：	CYP2D6 alleles do not indicate changes from recommended dose		

TreatG\％
ReviewG：

Haloperidol	Phenotype	Genetic Test	Results	Source／Evidence
Haldol	Increased risk of adverse drug	ANKK1 rs1800497	A／G	PharmGKB 3
TreatG $\%$	reactions			
ReviewG $G_{\%}$	Implication：	ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia		

Hydrocodone	Phenotype	Genetic Test	Results	Source／Evidence
Hysingla	Normal metabolizer	CYP2D6	$* 1 / * 1$	CPIC B 6
Zohydro	Implication：	CYP2D6 alleles do not indicate changes from recommended dose		

TreatG：
ReviewG $\%$
incite $\left.\right|_{\mid} ^{\mid l}$ health
CYP2D6 alleles do not indicate changes from recommended dose

PATIENT INFORMATION
NAME: John Doe
DOB: 01/Feb/1958
SEX AT BIRTH: Male

SPECIMEN DETAILS
BARCODE: IHM_002
SAMPLE ID: Doe_001
TYPE: Buccal Swab
COLLECTED: 20/Nov/2023

Iloperidone	Phenotype	Genetic Test	Results	Source/Evidence
Fanapt	Normal metabolizer	CYP2D6	$* 1 / * 1$	FDA PGx Table ${ }^{35}$
	Increased risk of adverse drug	ANKK1 rs1800497	A/G	PharmGKB 3
TreatG:	reactions			
ReviewG:\%	Implication:	ANKK1 alleles indicate an increased risk of hyperprolactinemia		
			CYP2D6 alleles do not indicate changes from recommended dose	

Imipramine	Phenotype	Genetic Test	Results	Source/Evidence
Tofranil	Normal metabolizer	CYP2D6	${ }^{*} /{ }^{*} 1$	CPIC ${ }^{16}$; FDA PGx
TreatG\%				Table ${ }^{35}$
ReviewG*	Rapid metabolizer	CYP2C19	*1/*17	CPIC A ${ }^{16}$

Implication: | CYP2C19 rapid metabolizer: increased metabolism of Imipramine |
| :--- |
| may affect response or adverse drug reactions | may affect response or adverse drug reactions

Consider an alternative drug not predominantly metabolized by CYP2C19

| Lansoprazole | Phenotype | Genetic Test | Results |
| :--- | :--- | :--- | :--- | Source/Evidence

Lofexidine	Phenotype	Genetic Test	Results	Source/Evidence
Lucemyra	Normal metabolizer	CYP2D6	${ }^{1 / 1 / 1}$	FDA PGx Table ${ }^{35}$
	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		

ReviewG:

Lorazepam	Phenotype	Genetic Test	Results	Source/Evidence
Ativan ReviewG $\% \%$	Normal metabolizer		CYP2C9	${ }^{*} 1 / * 1$

incite $\left.\right|_{\mid} ^{\mid}$health
Implication: CYP2C9 alleles indicate typical risk of Lorazepam-related falls

		いいルルル リゴ	ハーフレル	
Altoprev	Normal function	SLCO1B1	＊ $1 / * 1$	CPIC A^{5}
9	Implication：	SLCO1B1 alleles indicate typical exposure to Lovastatin		
TreatG		Consider prescribing desired starting dose and adjust based on disease－specific guidelines		

ReviewG\％

Loxapine	Phenotype	Genetic Test	Results	Source／Evidence
Adasuve	Increased risk of adverse drug Loxapac	ANKK1 rs1800497	A／G	PharmGKB 3
TreatG：	reactions	Implication：	ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia	

Lurasidone	Phenotype	Genetic Test	Results	Source／Evidence
Latuda	Increased risk of adverse drug	ANKK1 rs1800497	A／G	PharmGKB 3
reactions	Implication：	ANKK1 alleles indicate an increased risk of hyperprolactinemia		

TreatG\％
ReviewG：

Metoclopramide	Phenotype	Genetic Test	Results	Source／Evidence
Metonia	Normal metabolizer	CYP2D6	${ }^{1 / * 1}$	FDA PGx Table ${ }^{35}$
Reglan	Implication：	CYP2D6	alleles do not indicate changes from recommended dose	

TreatG：
ReviewG：
incite $\left.\right|_{1} ^{\mid \text {health }}$

PATIENT INFORMATION
SPECIMEN DETAILS
ORDERED BY
NAME：John Doe
BARCODE：IHM＿002
provider name
DOB：01／Feb／1958
SAMPLE ID：Doe＿001
SEX AT BIRTH：Male

－ルレטpiviv！		ールルール ルコ	ハレフиレ	いいルレレレvルいいし
Kapspargo Sprinkle	Normal metabolizer	CYP2D6	＊1／＊1	DPWG（PharmGKB
Lopressor				1A）${ }^{8}$ ；FDA PGx
Toprol－XL				Table ${ }^{35}$
\square	Implication：	do not indicat	s from	ed dose

TreatG\％
ReviewG：

Mirabegron	Phenotype	Genetic Test	Results	Source／Evidence
Myrbetriq	Normal metabolizer	CYP2D6	${ }^{*} 1 / * 1$	FDA PGx Table ${ }^{35}$
Implication：	CYP2D6 alleles do not indicate changes from recommended dose			

TreatG：
ReviewG\％

Molindone	Phenotype	Genetic Test	Results	Source／Evidence
Moban	Increased risk of adverse drug TreatG $\because \circ \%$	ANKK1 rs1800497	A／G	PharmGKB 3
ReviewG $\% \%$	Implication：	ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia		

Morphine	Phenotype	Genetic Test	Results	Source／Evidence
Kadian	Typical response	OPRM1 rs1799971	A／A	PharmGKB 3 ${ }^{6}$
M－Eslon Morphabond ER	Implication：	OPRM1 alleles indicate a typical response to Morphine		
MS Contin				

TreatG：
ReviewG：

Nebivolol	Phenotype	Genetic Test	Results	Source／Evidence
Bystolic	Normal metabolizer	CYP2D6	${ }^{1} 1 / * 1$	FDA PGx Table ${ }^{35}$
	Implication：	CYP2D6 alleles do not indicate changes from recommended dose		

TreatG $\%$
ReviewG $\%$

Nitrazepam	Phenotype	Genetic Test	Results	Source／Evidence
Mogadon Normal metabolizer CYP2C9	${ }^{* 1 / * 1}$	Case－control		
ReviewG $\%$	Implication：	CYP2C9 alleles indicate typical risk of Nitrazepam－related falls ${ }^{13}$		

Nortriptyline	Phenotype	Genetic Test	Results	Source／Evidence	
Aventyl	Normal metabolizer	CYP2D6	＊1／＊1	CPIC A ${ }^{16}$ ；FDA PGx Table ${ }^{35}$	
Pamelor					
TreatG\％	Implication：C	CYP2D6 alleles do not indicate changes from recommended dose			
incite Incite Heal		$\begin{aligned} & \text { Results For John } \\ & 176007 \text { \| CAP: } 94 \end{aligned}$	3805 Old	oylestown，PA 18902	Page： 14 of 33

ソıルıиャッル		ーいルしル ルコー	ハーフロル	
Zyprexa TreatG ${ }^{\circ}$	Increased risk of adverse drug reactions	ANKK1 rs1800497	A／G	PharmGKB 3
ReviewG\％	Implication：ANKK1 alleles	dicate an increased	k of hyp	mia

Omeprazole	Phenotype	Genetic Test	Results	Source／Evidence
Losec	Rapid metabolizer	CYP2C19	${ }^{* 1 / * 17}$	CPIC A A 22 ；FDA PGx
Olex		Table		
Prilosec				

Ondansetron	Phenotype	Genetic Test	Results	Source／Evidence	
Zofran	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	CPIC A	
Zuplenz	Implication：	CYP2D6 alleles do not indicate changes from recommended dose			

ReviewG：

Oral contraceptives	Phenotype	Genetic Test	Results	Source／Evidence
ReviewG：	Typical risk of adverse drug reactions	Factor V rs6025	C／C	PharmGKB 1A
	Typical risk of adverse drug reactions	Factor II rs1799963	G／G	PharmGKB 3
	Implication：	F2 and F5 alleles do not indicate changes from recommended dose		

Oxazepam	Phenotype	Genetic Test	Results	Source／Evidence
ReviewG $\%$	Normal metabolizer	CYP2C9	${ }^{*} 1 /{ }^{*} 1$	Case－control studies ${ }^{13}$

Paliperidone	Phenotype	Genetic Test	Results	Source／Evidence
Invega	Increased risk of adverse drug	ANKK1 rs1800497	A／G	PharmGKB 3
en	reactions			
TreatG $\%$	Implication：	ANKK1 alleles indicate an increased risk of hyperprolactinemia		
ReviewG $\%$				

Pantoprazole	Phenotype	Genetic Test	Results	Source／Evidence
Pantoloc	Rapid metabolizer	CYP2C19	${ }^{*} 1 / * 17$	CPIC A ${ }^{22}$ ；FDA PGx
Protonix				
Tecta TreatG： ReviewG＊	Implication：Moderate CPIC recommendation：Initiate standard starting daily dose．Consider increasing dose by $50-100 \%$ of the standard dose for the treatment of Helicobacter pylori infection and erosive esophagitis．			

PATIENT INFORMATION
NAME：John Doe
DOB：01／Feb／1958
SEX AT BIRTH：Male

SPECIMEN DETAILS
BARCODE：IHM＿002
SAMPLE ID：Doe 001
TYPE：Buccal Swab
COLLECTED：20／Nov／2023

	－י＂וviypu	ルールルル ルコレ	ハーフルル	
Brisdelle Paxil	Normal metabolizer	CYP2D6	＊ $1 / * 1$	CPIC ${ }^{15}$ ；FDA PGx Table ${ }^{35}$
Pexeva	Implication：CYP2D6 alleles do not indicate changes from recommended dose			
\square				
ReviewG\％				
Perphenazine	Phenotype	Genetic Test	Results	Source／Evidence
7	Normal metabolizer	CYP2D6	＊ $1 / * 1$	FDA PGx Table 35
TreatG ${ }_{\circ}^{\circ}$	Increased risk of adverse drug reactions	ANKK1 rs1800497	A／G	PharmGKB 3
	Implication：$\quad \begin{aligned} & \text { ANKK1 allele } \\ & \text { hyperprolact } \\ & \\ & \\ & \text { CYP2D6 alle }\end{aligned}$	dicate an increased mia	of we	
		do not indicate chan	es from	ed dose

Phenytoin	Phenotype	Genetic Test	Results
Dilantin	Normal metabolizer	CYP2C9	$* 1 / * 1$
Tremyto ine Implication： CYP2C9 normal metabolizer：normal metabolism of Phenytoin to Phenytek less active compounds			
		CYP2C9 alleles do not indicate changes from recommended dose	

ReviewG：\％

Pimozide	Phenotype	Genetic Test	Results	Source／Evidence
Orap	Normal metabolizer	CYP2D6	＊1／＊1	FDA PGx Table ${ }^{35}$
TreatG： ReviewG $\%$	Increased risk of adverse drug reactions	ANKK1 rs1800497	A／G	PharmGKB 3
	Implication：ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia CYP2D6 alleles do not indicate changes from recommended dose			

Piroxicam	Phenotype	Genetic Test	Results

Pitavastatin	Phenotype	Genetic Test	Results	Source／Evidence
Livalo	Normal function	SLCO1B1	$* 1 / * 1$	CPIC A
Zypitamag	Implication：	SLCO1B1 alleles indicate typical exposure to Pitavastatin		
		Consider prescribing desired starting dose and adjust based on disease－specific guidelines		

TreatG\％ ReviewG\％
incite $\left.\right|_{\mid} ^{I}$ health

PATIENT INFORMATION
SPECIMEN DETAILS
ORDERED BY
NAME: John Doe
BARCODE: IHM_002
provider name
DOB: 01/Feb/1958
SAMPLE ID: Doe_001
SEX AT BIRTH: Male

Promethazine	Phenotype	Genetic Test	Results	Source/Evidence
Phenadoz	Increased risk of adverse drug	ANKK1 rs1800497	A/G	PharmGKB 3
Promethegan	reactions			
TreatG $\%$	Implication:	ANKK1 alleles indicate an increased risk of weight gain and ReviewG $\% \%$		

Propafenone	Phenotype	Genetic Test	Results	Source/Evidence
Rythmol	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	DPWG (PharmGKB
TreatG $\circ \circ$				1 A) ${ }^{8}$;FDA PGx
ReviewG*				Table ${ }^{35}$

Propranolol	Phenotype	Genetic Test	Results	Source/Evidence
Inderal	Normal metabolizer	CYP2D6	$* 1 / * 1$	FDA PGx Table ${ }^{35}$
Innopran	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		
TreatG $\because \circ \%$				
ReviewG $\because \circ \%$				

Protriptyline	Phenotype	Genetic Test	Results	Source/Evidence
Vivactil	Normal metabolizer	CYP2D6	${ }^{1 / * 1}$	FDA PGx Table ${ }^{35}$
ReviewG:\%	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		

Quetiapine	Phenotype	Genetic Test	Results	Source/Evidence
Seroquel	Increased risk of adverse drug reactions	ANKK1 rs1800497	A/G	PharmGKB 3
TreatG	Implication:	ANKK1 alleles indicate an increased risk of hyperprolactinemia		

ReviewG:\%

Risperidone	Phenotype	Genetic Test	Results	Source/Evidence	
Perseris	Normal metabolizer	CYP2D6	*1/*1	DPWG (PharmGKB	
Risperdal				$1 \mathrm{~A})^{8}$	
0	Implication:	CYP2D6 alleles do not indicate changes from recommended dose			
\square					
TreatG\%					
ReviewG					
		Results For John 176007 \| CAP: 94	3805 Old Ea	Doylestown, PA 18902	Page: 17 of 33

PATIENT INFORMATION
NAME：John Doe
DOB：01／Feb／1958
SEX AT BIRTH：Male

SPECIMEN DETAILS
BARCODE：IHM＿002
SAMPLE ID：Doe 001
TYPE：Buccal Swab
COLLECTED：20／Nov／2023

Nuouvuotulu＇	－＇儿，	いいいい いつい	…aut	いいいいしレvルいいい
Crestor	Normal function	SLCO1B1	${ }^{*} 1 /{ }^{*} 1$	CPIC A ${ }^{5}$ ；FDA PGx
Ezallor				Table ${ }^{35}$

Implication：SLCO1B1 alleles indicate typical exposure to Rosuvastatin

TreatG：\％
ReviewG：

Sertraline	Phenotype		Genetic Test	Results

| Simvastatin | Phenotype | | Genetic Test | Results |
| :--- | :--- | :--- | :--- | :--- | Source／Evidence | Zocor | Normal function |
| :--- | :--- |
| Flolipid | |

ReviewG：

Siponimod	Phenotype	Genetic Test	Results	Source／Evidence
Mayzent	Normal metabolizer	CYP2C9（Star Alleles）＊1／＊1	FDA PGx Table ${ }^{35}$	
Rev	Implication：	CYP2C9 alleles do not indicate changes from recommended dose		
ReviewG $\%$				

Tacrolimus	Phenotype	Genetic Test	Results	Source／Evidence
Advagraf	Poor metabolizer	CYP3A5	${ }^{* 3 / * 3}$	CPIC A3$;$ FDA PGX
Astagraf XL				Table ${ }^{35}$
Envarsus XR	Normal metabolizer	CYP3A4	$*_{1} /{ }^{*} 1$	PharmGKB 1B Prograf Protopic

ReviewG：\％
Implication：CYP3A5 alleles do not indicate changes from recommended dose
CYP3A4 alleles do not indicate changes from recommended dose
Use therapeutic drug monitoring to guide dose adjustments

Tamoxifen	Phenotype	Genetic Test	Results	Source／Evidence
Nolvadex	Normal metabolizer	CYP2D6（Activity	${ }^{*} 1 /{ }^{*} 1$	CPIC A1 11 ；FDA PGx
Soltamox		Score）		Table 35

ReviewG：\％
Implication：CYP2D6 normal metabolizer：typical metabolism of Tamoxifen to endoxifen
Strong CPIC recommendation for breast cancer therapy：Initiate therapy with recommended standard of care dosing．Avoid moderate and strong CYP2D6 inhibitors．

ReviewG:

Tetrabenazine	Phenotype	Genetic Test	Results	Source/Evidence
Austedo	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	FDA PGx Table ${ }^{35}$
Nitoman	Implication:	CYP2D6 alleles do not indicate changes from recommended dose		
Xenazine				

ReviewG:\%

Thioridaz ine	Phenotype	Genetic Test	Results	Source/Evidence
TreatG*	Normal metabolizer	CYP2D6	*1/*1	FDA PGx Table ${ }^{35}$
ReviewG\%	Increased risk of adverse drug reactions	ANKK1 rs1800497	A/G	PharmGKB 3
	Implication: ANKK1 alleles indicate an increased risk of weight gain and hyperprolactinemia CYP2D6 alleles do not indicate changes from recommended dose			

Tolterodine	Phenotype	Genetic Test	Results	Source/Evidence
Detrol	Normal metabolizer	CYP2D6	$* 1 / * 1$	FDA PGx Table ${ }^{35}$
Implication:	CYP2D6 alleles do not indicate changes from recommended dose			

TreatG \%
ReviewG:

Tramadol	Phenotype	Genetic Test	Results	Source/Evidence
Conzip Durela	Normal metabolizer	CYP2D6	${ }^{2} 1 / * 1$	CPIC A ${ }^{6}$;FDA PGx
Ralivia				Table
Ultram				

TreatG:
ReviewG\%
incite $\left.\right|_{1} ^{I}$ health

＇${ }^{\text {ancuiul．}}$	－＂unvyru	いいルいに いつ	いとouno	৩vuルレーレルいいい
Halcion	Normal metabolizer	CYP2C9	＊1／＊1	Case－control studies ${ }^{13}$
ReviewG：	Implication：	indicate typical	Triazolam	alls

| Trifluoperazine | Phenotype | | Genetic Test | Results |
| :--- | :--- | :--- | :--- | :--- |\quad Source／Evidence | | Increased risk of adverse drug | ANKK1 rs1800497 |
| :--- | :--- | :--- | A／G \quad PharmGKB 3

Trimipramine	Phenotype	Genetic Test	Results	Source／Evidence
Surmontil ReviewG $\%$	Normal metabolizer	CYP2D6	${ }^{*} 1 / * 1$	CPIC A ${ }^{16}$ ；FDA PGx
	Rapid metabolizer	CYP2C19	$* 1 / * 17$	Table ${ }^{35}$

Implication：CYP2C19 rapid metabolizer：increased metabolism of Trimipramine may affect response or adverse drug reactions
Consider an alternative drug not predominantly metabolized by CYP2C19

Valbenazine	Phenotype	Genetic Test	Results	Source／Evidence
Ingrezza	Normal metabolizer	CYP2D6	${ }^{*} 1 /{ }^{*} 1$	FDA PGx Table ${ }^{35}$
ReviewG $\%$	Implication：		CYP2D6 alleles do not indicate changes from recommended dose	

Venlafaxine	Phenotype	Genetic Test	Results	Source／Evidence
Effexor XR	Normal metabolizer	CYP2D6	${ }^{1 / 1 / * 1}$	DPWG（PharmGKB
			1 A）${ }^{8}$ ；FDA PGx	
TreatG $\%$			Table ${ }^{35}$	

ReviewG＊

Voriconazole	Phenotype	Genetic Test	Results	Source／Evidence
Vfend 9	Rapid metabolizer	CYP2C19	＊1／＊17	$\begin{aligned} & \text { CPIC A }{ }^{26} \text {;FDA PGx } \\ & \text { Table }{ }^{35} \end{aligned}$
ReviewG：	Implication：${ }^{\text {C }}$	metabolizer： mpounds concentrations ernative drug	d metabo drug m ominantly	riconazole response zed by
Vortioxetine	Phenotype	Genetic Test	Results	Source／Evidence
Trintellix TreatG\％ ReviewG\％	Implication：CYP2D6 alleles do not indicate changes from recommended dose			

incite｜＇health

vvuilul＂	－יルハviypu	ールルール ルコレ	ハーフルル	
Coumadin Jantoven	Normal metabolizer	CYP2C9	＊ $1 / * 1$	CPIC A^{17} ；FDA PGx Table ${ }^{35}$
TreatG：\％ ReviewG＊	Reduced response	VKORC1	G／G	CPIC A^{17} ；FDA PGx Table ${ }^{35}$
	Implication： The algorithm in TreatGx includes pharmacogenetics and other clinical factors in calculating initial warfarin dose			
Ziprasidone	Phenotype	Genetic Test	Results	Source／Evidence
Geodon Zeldox	Increased risk of adverse drug reactions	ANKK1 rs1800497	A／G	PharmGKB 3
TreatG：\％ ReviewG＊	Implication：ANKK1 alleles indicate an increased risk of hyperprolactinemia			
Zuclopenthixol	Phenotype	Genetic Test	Results	Source／Evidence
Clopixol TreatG：	Normal metabolizer	CYP2D6	＊ $1 / * 1$	DPWG（PharmGKB $1 A)^{8}$
Review ${ }^{\circ}$	Increased risk of adverse drug reactions	ANKK1 rs1800497	A／G	PharmGKB 3
	Implication：	dicate an increased mia	of we	
		do not indicate chan	es from	ed dose

Iable or AvaıIable Kererences

Drug	Genetic Test	Sources
Alfentanil	OPRM1 rs1799971	PharmGKB
Alprazolam	CYP2C9	Case-control studies ${ }^{13}$
Amitriptyline	CYP2D6	CPIC ${ }^{16}$; FDA ${ }^{35}$
Amitriptyline	CYP2C19	CPIC ${ }^{16}$
Amoxapine	CYP2D6	FDA ${ }^{35}$
Amphetamine	CYP2D6	FDA ${ }^{35}$
Aripiprazole	CYP2D6	DPWG ${ }^{8}$; DAA 35
Aripiprazole	ANKK1 rs1800497	PharmGKB
Aripiprazole lauroxil	CYP2D6	FDA ${ }^{35}$
Asenapine	ANKK1 rs1800497	PharmGKB
Atomoxetine	CYP2D6 (Activity Score)	CPIC ${ }^{4}$; PA 35
Atorvastatin	SLCO1B1	CPIC ${ }^{5}$; PDA 35
Avatrombopag	CYP2C9	FDA ${ }^{35}$
Brexpiprazole	CYP2D6	DPWG ${ }^{8}$; DAA 35
Brexpiprazole	ANKK1 rs1800497	PharmGKB
Brivaracetam	CYP2C19	FDA ${ }^{35}$
Bromazepam	CYP2C9	Case-control studies ${ }^{13}$
Cariprazine	ANKK1 rs1800497	PharmGKB
Carisoprodol	CYP2C19	FDA ${ }^{35}$
Carvedilol	CYP2D6	FDA ${ }^{35}$
Celecoxib	CYP2C9 (Star Alleles)	CPIC 32; FDA ${ }^{35}$
Cevimeline	CYP2D6	FDA ${ }^{35}$
Chlordiazepoxide	CYP2C9	Case-control studies ${ }^{13}$
Chlorpromazine	ANKK1 rs1800497	PharmGKB
Citalopram	CYP2C19	CPIC ${ }^{15}$; FDA ${ }^{35}$

PATIENT INFORMATION
NAME: John Doe DOB: 01/Feb/1958 SEX AT BIRTH: Male

Drug	Genetic Test	Sources
Clobazam	CYP2C19	FDA ${ }^{35}$
Clobazam	CYP2C9	Case-control studies ${ }^{13}$
Clomipramine	CYP2D6	CPIC ${ }^{16}$; FDA ${ }^{35}$
Clomipramine	CYP2C19	CPIC ${ }^{16}$
Clonazepam	CYP2C9	Case-control studies ${ }^{13}$
Clopidogrel	CYP2C19	CPIC ${ }^{20}$; DAA 35
Clorazepate	CYP2C9	Case-control studies ${ }^{13}$
Clozapine	CYP2D6	FDA ${ }^{35}$
Clozapine	ANKK1 rs1800497	PharmGKB
Codeine	CYP2D6	CPIC ${ }^{6}$; PDA 35
Cyclosporine	CYP3A5	PharmGKB
Darifenacin	CYP2D6	FDA ${ }^{35}$
Desipramine	CYP2D6	CPIC 16; PDA 35
Deutetrabenazine	CYP2D6	FDA ${ }^{35}$
Dexlansoprazole	CYP2C19	CPIC ${ }^{22}$; DAA 35
Diazepam	CYP2C19	FDA ${ }^{35}$
Diazepam	CYP2C9	Case-control studies ${ }^{13}$
Donepezil	CYP2D6	FDA ${ }^{35}$
Doxepin	CYP2D6	CPIC 16; FDA ${ }^{35}$
Doxepin	CYP2C19	CPIC ${ }^{16}$
Dronabinol	CYP2C9	FDA ${ }^{35}$
Efavirenz	CYP2B6	CPIC ${ }^{7}$; PPWG 8; FDA 35
Elagolix	SLCO1B1	FDA ${ }^{35}$
Eliglustat	CYP2D6	DPWG ${ }^{8}$ FDA 35
Eltrombopag	Factor V rs6025	FDA ${ }^{28}$

Drug	Genetic Test	Sources
Eltrombopag	Factor II rs1799963	PharmGKB
Erdafitinib	CYP2C9 (Star Alleles)	FDA ${ }^{35}$
Escitalopram	CYP2C19	CPIC ${ }^{15}$; FDA ${ }^{35}$
Fentanyl	OPRM1 rs1799971	PharmGKB
Fesoterodine	CYP2D6	FDA ${ }^{35}$
Flecainide	CYP2D6	DPWG ${ }^{8}$
Flibanserin	CYP2C19	FDA ${ }^{35}$
Flupentixol	ANKK1 rs1800497	PharmGKB
Fluphenazine	ANKK1 rs1800497	PharmGKB
Flurazepam	CYP2C9	Case-control studies ${ }^{13}$
Flurbiprofen	CYP2C9 (Star Alleles)	CPIC ${ }^{32}$; DDA 35
Fluvastatin	CYP2C9	CPIC ${ }^{5}$
Fluvastatin	SLCO1B1	CPIC ${ }^{5}$
Fluvoxamine	CYP2D6	CPIC ${ }^{15}$; FDA ${ }^{35}$
Fosphenytoin	CYP2C9	CPIC ${ }^{18}$
Galantamine	CYP2D6	FDA ${ }^{35}$
Haloperidol	ANKK1 rs1800497	PharmGKB
Hydrocodone	CYP2D6	CPIC ${ }^{6}$
Ibuprofen	CYP2C9 (Star Alleles)	CPIC ${ }^{32}$
Iloperidone	CYP2D6	FDA ${ }^{35}$
Iloperidone	ANKK1 rs1800497	PharmGKB
Imipramine	CYP2D6	CPIC ${ }^{16}$; FDA ${ }^{35}$
Imipramine	CYP2C19	CPIC ${ }^{16}$
Lansoprazole	CYP2C19	CPIC ${ }^{22}$; FDA ${ }^{35}$
Lofexidine	CYP2D6	FDA ${ }^{35}$

Drug	Genetic Test	Sources
Lorazepam	CYP2C9	Case-control studies ${ }^{13}$
Lovastatin	SLCO1B1	CPIC ${ }^{5}$
Loxapine	ANKK1 rs1800497	PharmGKB
Lurasidone	ANKK1 rs1800497	PharmGKB
Meclizine	CYP2D6	FDA ${ }^{35}$
Meloxicam	CYP2C9 (Star Alleles)	CPIC ${ }^{32}$
Methotrimeprazine	ANKK1 rs1800497	PharmGKB
Metoclopramide	CYP2D6	FDA ${ }^{35}$
Metoprolol	CYP2D6	DPWG ${ }^{8}$ FDA 35
Mirabegron	CYP2D6	FDA ${ }^{35}$
Molindone	ANKK1 rs1800497	PharmGKB
Morphine	OPRM1 rs1799971	PharmGKB ${ }^{6}$
Nebivolol	CYP2D6	FDA ${ }^{35}$
Nitrazepam	CYP2C9	Case-control studies ${ }^{13}$
Nortriptyline	CYP2D6	CPIC ${ }^{16}$; FDA ${ }^{35}$
Olanzapine	ANKK1 rs1800497	PharmGKB
Omeprazole	CYP2C19	CPIC ${ }^{22}$; FDA ${ }^{35}$
Ondansetron	CYP2D6	CPIC ${ }^{2}$
Oral contraceptives	Factor V rs6025	PharmGKB
Oral contraceptives	Factor II rs1799963	PharmGKB
Oxazepam	CYP2C9	Case-control studies ${ }^{13}$
Paliperidone	ANKK1 rs1800497	PharmGKB
Pantoprazole	CYP2C19	CPIC ${ }^{22}$; FDA ${ }^{35}$
Paroxetine	CYP2D6	CPIC ${ }^{15}$; FDA ${ }^{35}$
Perphenazine	CYP2D6	FDA ${ }^{35}$

Drug	Genetic Test	Sources
Perphenazine	ANKK1 rs1800497	PharmGKB
Phenytoin	CYP2C9	CPIC ${ }^{18}$
Pimozide	CYP2D6	DPWG ${ }^{8}$; PDA 35
Pimozide	ANKK1 rs1800497	PharmGKB
Piroxicam	CYP2C9 (Star Alleles)	CPIC ${ }^{32}$; FDA ${ }^{35}$
Pitavastatin	SLCO1B1	CPIC ${ }^{5}$
Pravastatin	SLCO1B1	CPIC ${ }^{5}$
Prochlorperazine	ANKK1 rs1800497	PharmGKB
Promethazine	ANKK1 rs1800497	PharmGKB
Propafenone	CYP2D6	DPWG ${ }^{8}$; PDA 35
Propranolol	CYP2D6	FDA ${ }^{35}$
Protriptyline	CYP2D6	FDA ${ }^{35}$
Quetiapine	ANKK1 rs1800497	PharmGKB
Risperidone	CYP2D6	DPWG ${ }^{8}$
Rosuvastatin	SLCO1B1	CPIC ${ }^{5}$; PA 35
Sertraline	CYP2C19	CPIC ${ }^{15}$
Simvastatin	SLCO1B1	CPIC ${ }^{5}$; PDA 35
Siponimod	CYP2C9 (Star Alleles)	FDA ${ }^{35}$
Tacrolimus	CYP3A5	CPIC ${ }^{3}$; PA 35
Tacrolimus	CYP3A4	PharmGKB
Tamoxifen	CYP2D6 (Activity Score)	Clinical trial ${ }^{14}$; CPIC 11; ${ }^{1}{ }^{35}{ }^{35}$
Tamsulosin	CYP2D6	FDA ${ }^{35}$
Temazepam	CYP2C9	Case-control studies ${ }^{13}$
Tenoxicam	CYP2C9 (Star Alleles)	CPIC ${ }^{32}$
Tetrabenazine	CYP2D6	FDA ${ }^{35}$

Drug	Genetic Test	Sources
Thioridazine	CYP2D6	FDA ${ }^{35}$
Thioridazine	ANKK1 rs1800497	PharmGKB
Tolterodine	CYP2D6	FDA ${ }^{35}$
Tramadol	CYP2D6	CPIC ${ }^{6}$ FDA ${ }^{35}$
Triazolam	CYP2C9	Case-control studies ${ }^{13}$
Trifluoperazine	ANKK1 rs1800497	PharmGKB
Trimipramine	CYP2D6	CPIC ${ }^{16}$; FDA ${ }^{35}$
Trimipramine	CYP2C19	CPIC ${ }^{16}$
Valbenazine	CYP2D6	FDA ${ }^{35}$
Venlafaxine	CYP2D6	DPWG ${ }^{\text {; }} \mathrm{FDA}^{35}$
Voriconazole	CYP2C19	CPIC 26; FDA ${ }^{35}$
Vortioxetine	CYP2D6	FDA ${ }^{35}$
Warfarin	CYP2C9	CPIC 17; FDA ${ }^{35}$
Warfarin	VKORC1	CPIC ${ }^{17}$; FDA^{35}
Ziprasidone	ANKK1 rs1800497	PharmGKB
Zuclopenthixol	CYP2D6	DPWG ${ }^{8}$
Zuclopenthixol	ANKK1 rs1800497	PharmGKB

кeterences

1: Amstutz, U. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clinical Pharmacology \& Therapeutics 103, 210-216 (2017).

2: Bell, G. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clinical Pharmacology \& Therapeutics 102, 213-218 (2017).

3: Birdwell, K. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clinical Pharmacology \& Therapeutics 98, 19-24 (2015).

4: Brown, J. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Cytochrome P450 (CYP)2D6 Genotype and Atomoxetine Therapy. Clinical Pharmacology \& Therapeutics 106, 94-102 (2019).
5: CooperDeHoff, RM. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and StatinAssociated Musculoskeletal Symptoms. Clinical Pharmacology \& Therapeutics 111, 10071021 (2022).

6: Crews, K. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, OPRM1, and COMT genotype and select opioid therapy. Clinical Pharmacology \& Therapeutics 110, 888-896 (2021).

7: Desta, Z. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clinical Pharmacology \& Therapeutics 106, 726-733 (2019).

8: Dutch Pharmacogenetics Working Group. Dutch Pharmacogenetics Working Group Guidelines May 2020. (2020).
9: Gammal RS. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Medication Use in the Context of G6PD Genotype. Clinical Pharmacology \& Therapeutics 113, 973-985 (2022).

10: Gammal, RS. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clinical Pharmacology \& Therapeutics 99, 363-369 (2016).

11: Goetz M. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clinical Pharmacology \& Therapeutics 103, 770-777 (2018).

12: Gonsalves, SG. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of RYR1 or CACNA1S Genotypes. Clinical Pharmacology \& Therapeutics 105, 1338-1344 (2019).

13: Ham, A. et al. CYP2C9 Genotypes Modify Benzodiazepine-Related Fall Risk: Original Results From Three Studies With Meta-Analysis. Journal of the American Medical Directors Association 18, 88.e1-88.e15 (2017).

14: He, W. et al. CYP2D6 genotype predicts tamoxifen discontinuation and drug response: a secondary analysis of the KARISMA trial. Annals of Oncology 32, 1286-1293 (2021).

15: Hicks, J. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clinical Pharmacology \& Therapeutics 98, 127-134 (2015).

16: Hicks, J. et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clinical Pharmacology \& Therapeutics 102, 37-44 (2017).

17: Johnson, J. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clinical Pharmacology \& Therapeutics 102, 397-404 (2017).

18: Karnes, J. et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenyto in dosing: 2020 update. Clinical Pharmacology \& Therapeutics 109, 302-309 (2021).

19: King, D. et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37, 641-650 (2012).
20: Lee, C. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clinical Pharmacology \& Therapeutics 112, 959-967 (2022).

21: Lerman, C. et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. The Lancet Respiratory Medicine 3, 131-138 (2015).
incite |' $\left.\right|_{1} ^{\prime \prime}$ health

PATIENT INFORMATION
NAME: John Doe
DOB: 01/Feb/1958
SEX AT BIRTH: Male

SPECIMEN DETAILS
BARCODE: IHM_002
SAMPLE ID: Doe 001
TYPE: Buccal Swab
COLLECTED: 20/Nov/2023
 Dosing. Clinical Pharmacology \& Therapeutics (2020)

23: Lipworth, J. et al. Tailored second-line therapy in asthmatic children with the Arg(16) genotype. Clinical science 124, 521-528 (2013).

24: Martin, MA. et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clinical Pharmacology \& Therapeutics 91, 734-738 (2012).

25: McDermott, JH. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for the Use of Aminoglycosides Based on MT-RNR1 Genotype. Clinical Pharmacology \& Therapeutics 111, 366-372 (2022).

26: Moriyama, B. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clinical Pharmacology \& Therapeutics 102, 45-51 (2017).

27: Muir, A. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for IFNL3 (IL28B) Genotype and PEG Interferon-alpha-Based Regimens. Clinical Pharmacology \& Therapeutics 95, 141-146 (2014).

28: Novartis Pharmaceuticals Corporation. Promacta Product Monograph. 10 (2018).

29: Phillips, E. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clinical Pharmacology \& Therapeutics 103, 574-581 (2018).

30: Relling, M. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clinical Pharmacology \& Therapeutics 105, 1095-1105 (2019).

31: Saito, Y. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clinical Pharmacology \& Therapeutics 99, 36-37 (2015).

32: Theken, K. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C9 and Nonsteroidal Antiinflammatory Drugs. Clinical Pharmacology \& Therapeutics 108, 191-200 (2020)

33: Ueta, M. et al. Independent strong association of HLAA*02:06 and HLAB*44:03 with cold medicinerelated StevensJohnson syndrome with severe mucosal involvement. Scientific Reports 4, 4862 (2014).

34: Ueta, M. et al. Transethnic study confirmed independent associations of HLAA* 02:06 and HLAB*44:03 with cold medicinerelated StevensJohnson syndrome with severe ocular surface complications. Scientific Reports 4, 5981 (2014).

35: US Food and Drug Administration. Table of Pharmacogenetic Associations. (2020).

36: Vijverberg, S. et al. Arg16 ADRB2 genotype increases the risk of exacerbations in children with a reported use of beta-2 agonists: Results of the PACMAN cohort study. Pharmaceutisch Weekblad 150, 233-238 (2015).

37: Wakamatsu, T. et al. Human Leukocyte Antigen Class I Genes Associated With Stevens-Johnson Syndrome and Severe Ocular Complications Following Use of Cold Medicine in a Brazilian Population. JAMA Ophthalmology 135, 355 (2017).

38: Wechsler, M. et al. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta-agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. The Lancet 374, 1754-1764 (2009).

PATIENT INFORMATION

NAME: John Doe
DOB: 01/Feb/1958
SEX AT BIRTH: Male

SPECIMEN DETAILS

BARCODE: IHM_002
SAMPLE ID: Doe_001
TYPE: Buccal Swab
COLLECTED: 20/Nov/2023

ORDERED BY

provider name
GENERATED: 11/May/2023

Methods

The results meet stringent quality control metrics for DNA isolation and genotyping. SNPs are processed in an OpenArray platform. Each call has an estimated quality value $>95 \%$, based on the autocaller algorithm in the TaqMan $®$ Genotyper software (ThermoFisher Scientific). Copy number calls are accepted when confidence values are $>95 \%$. The HLA assays are processed using an RT-PCR-based presence/absence assay, and HLA positive calls are sequenced using Sanger technology to confirm. To avoid false negatives in HLA genotyping, if the presence/absence assay results are uncertain and Sanger sequencing results do not confirm them, a positive call is made.

Limitations

The annotations and interpretations provided in this report are based on scientific literature and do not take into account drug-drug interactions, medical conditions or other clinical factors that may affect medication response. Gene-drug interactions are ranked according to guidelines, level of evidence and clinical utility. GenXys reports and TreatGx Clinical Decision Support are regularly updated. Current predicted phenotype and allele functionality may change in the future depending on new evidence. Phenotype annotations for CYP2C9 are based on total activity scores as defined by CPIC ${ }^{79}$. Genetic test results and interpretation may be inaccurate for individuals who have undergone or are receiving non-autologous blood transfusion, tissue, or organ transplant therapies.

The report includes alleles of proteins involved in the metabolism of many medications. In rare cases, a variant that is not covered may be typed as ${ }^{*} 1$ or other variants. In the case of pseudogenes and mutations in the untranslated regions of genes, incorrect allele typing may occur despite proper SNP detection. Preferential amplification of one allele over another present in the sample may also lead to incorrect genotyping.

Liability Disclaimer

This test was developed and its performance characteristics determined by GenXys Health Care Systems. It has not been cleared or approved by the US Food and Drug Administration. The report is not a diagnostic test, and TreatGx is not a prescribing system. You should discuss your pharmacogenetic information with a physician or other health care provider before you act upon the pharmacogenetic information resulting from this report. The medication brand names are not an exhaustive list and do not include combination therapies. Not all medications in this report are included in the TreatGx or ReviewGx software or other GenXys derivative works.

Laboratory Director

[^0]
Laboratory Report

The Laboratory Report contains your genetic results.

Gene	rsid	HGVS	HGVS Reference	Result
ABCB1	rs1045642	c. $3645 \mathrm{G}>\mathrm{A}$	NC_000007.14	G/G
APOE	rs429358	c. $388 \mathrm{~T}>\mathrm{C}$	NC_000019.10	T/T
COMT	rs4680	c. $472 \mathrm{G}>\mathrm{A}$	NC_000022.11	G/A
CYP1A2	rs12720461	c. $-10+113 \mathrm{C}>\mathrm{T}$	NC_000015.10	C/C
CYP1A2	rs2069514	g.74745879G>A	NC_000015.10	G/G
CYP1A2	rs56107638	g.74753271G>A	NC_000015.10	G/G
CYP1A2	rs72547513	c. $558 \mathrm{C}>$ T	NC_000015.10	C/C
CYP1A2	rs762551	c. $-9-154 \mathrm{~A}>\mathrm{C}$	NC_000015.10	C/A
CYP2B6	rs28399499	c.983T>C	NC_000019.10	T/T
CYP2B6	rs3745274	c. $516 \mathrm{G}>\mathrm{A} / \mathrm{T}$	NC_000019.10	G/T
CYP2C19	rs12248560	c. $-806 \mathrm{C}>\mathrm{T}$	NC_000010.11	C/T
CYP2C19	rs28399504	c. $1 \mathrm{~A}>\mathrm{G} / \mathrm{T}$	NC_000010.11	A/A
CYP2C19	rs41291556	c. $358 \mathrm{~T}>\mathrm{C}$	NC_000010.11	T/T
CYP2C19	rs4244285	c. $681 \mathrm{G}>\mathrm{A} / \mathrm{C} / \mathrm{T}$	NC_000010.11	G/G
CYP2C19	rs4986893	c. $636 \mathrm{G}>\mathrm{A}$	NC_000010.11	G/G
CYP2C19	rs72552267	c. $395 \mathrm{G}>\mathrm{A}$	NC_000010.11	G/G
CYP2C19	rs72558186	c. $819+2 \mathrm{~T}>\mathrm{A}$	NC_000010.11	T/T
CYP2C19	rs56337013	c.1297C>T	NC_000010.11	C/C
CYP2C9	rs1057910	c. $1075 \mathrm{~A}>\mathrm{C} / \mathrm{G}$	NC_000010.11	A/A
CYP2C9	rs1304490498	c.353_362del	NC_000010.11	A/A
CYP2C9	rs1799853	c. $430 \mathrm{C}>$ T	NC_000010.11	C/C
CYP2C9	rs28371685	c. $1003 \mathrm{C}>$ T	NC_000010.11	C/C
CYP2C9	rs28371686	c. $1080 \mathrm{C}>\mathrm{A} / \mathrm{G} / \mathrm{T}$	NC_000010.11	C/C
CYP2C9	rs56165452	c. $1076 \mathrm{~T}>\mathrm{A} / \mathrm{C}$	NC_000010.11	T/T
CYP2C9	rs72558187	c. $269 \mathrm{~T}>\mathrm{C} / \mathrm{G}$	NC_000010.11	T/T
CYP2C9	rs72558190	c. $485 \mathrm{C}>\mathrm{A} / \mathrm{T}$	NC_000010.11	C/C
CYP2C9	rs7900194	c. $449 \mathrm{G}>\mathrm{A} / \mathrm{C} / \mathrm{T}$	NC_000010.11	G/G
CYP2C9	rs9332131	c.818del/dup	NC_000010.11	A/A
CYP2C9	rs9332239	c.1465C>T	NC_000010.11	C/C
CYP2D6	dup4125_4133	c.1403_1411dup	NC_000022.11	D/D
CYP2D6	rs1065852	c. $100 \mathrm{C}>\mathrm{T} / \mathrm{G}$	NC_000022.11	G/G
CYP2D6	rs1135840	c. $1457 \mathrm{G}>\mathrm{C} / \mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs16947	c. $886 \mathrm{C}>$ T/A	NC_000022.11	G/G
CYP2D6	rs201377835	c. 181-1G>C	NC_000022.11	G/G
CYP2D6	rs28371706	c. $320 \mathrm{C}>\mathrm{G} / \mathrm{A}$	NC_000022.11	G/G

Gene	rsID	HGVS	HGVS Reference	Result
CYP2D6	rs28371725	c. $985+39 \mathrm{G}>\mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs35742686	c. 775 del	NC_000022.11	T/T
CYP2D6	rs3892097	c. $506-1 \mathrm{G}>\mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs5030655	c. 454 del	NC_000022.11	A/A
CYP2D6	rs5030656	c.841_843del	NC_000022.11	TCT/TCT (A/A) ${ }^{1}$
CYP2D6	rs5030862	c. $124 \mathrm{G}>\mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs5030865	c. $505 \mathrm{G}>\mathrm{T} / \mathrm{C} / \mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs5030867	c. $971 \mathrm{~A}>\mathrm{C}$	NC_000022.11	T/T
CYP2D6	rs59421388	c. $1012 \mathrm{G}>\mathrm{A}$	NC_000022.11	C/C
CYP2D6	rs72549353	c.765_768del	NC_000022.11	A/A
CYP2D6	rs72549354	c.635dup	NC_000022.11	D/D
CYP2D6	rs774671100	c.137dup	NC_000022.11	A/A (D/D) ${ }^{1}$
CYP3A4	rs35599367	c. $522-191 \mathrm{C}>$ T	NC_000007.14	G/G
CYP3A4	rs4987161	c. $566 \mathrm{~T}>\mathrm{C}$	NC_000007.14	A/A
CYP3A4	rs55785340	c. $664 \mathrm{~T}>\mathrm{C} / \mathrm{A}$	NC_000007.14	A/A
CYP3A5	rs10264272	c. $624 \mathrm{G}>\mathrm{A}$	NC_000007.14	C/C
CYP3A5	rs28365083	c.1193C>A	NC_000007.14	G/G
CYP3A5	rs41303343	c.1035dup	NC_000007.14	D/D
CYP3A5	rs776746	c.219-237=	NC_000007.14	C/C
DRD2	rs1800497	c. $2137 \mathrm{G}>\mathrm{A}$	NC_000011.10	A/G
Factor II	rs1799963	c. $* 97 \mathrm{G}>\mathrm{A}$	NC_000011.10	G/G
Factor V	rs6025	c. $1601 \mathrm{G}>\mathrm{A}$	NC_000001.11	C/C
GLP1R	rs1042044	c. $780 \mathrm{C}>\mathrm{A}$	NC_000006.12	C/A
GLP1R	rs2300615	c. $510-1135 \mathrm{~T}>\mathrm{G}$	NC_000006.12	G/T
GLP1R	rs6923761	c. $502 \mathrm{G}>\mathrm{A}$	NC_000006.12	G/G
MTHFR	rs1801131	c. $1409 \mathrm{~T}>\mathrm{G}$	NC_000001.11	G/T
MTHFR	rs1801133	c. $788 \mathrm{G}>\mathrm{A}$	NC_000001.11	G/A
OPRM1	rs1799971	c. $118 \mathrm{~A}>\mathrm{G}$	NC_000006.12	A/A
PNPLA5	rs5764010	c. $950-169 \mathrm{C}>\mathrm{T}$	NC_000006.12	C/C
SLCO1B1	rs4149056	c. $521 \mathrm{~T}>\mathrm{C}$	NC_000012.12	T/T
SULT4A1	rs763120	c. $743-374 \mathrm{~T}>\mathrm{C}$	NC_000022.11	T/T
VKORC1	rs9923231	c. $-1639 \mathrm{G}>$ T	NC_000016.10	$\mathrm{G} / \mathrm{G}(\mathrm{C} / \mathrm{C})^{1}$

[^1]Copy Number Variation

Gene	Reference	Result
CYP2D6	NG_008376.3	2N

incite |' $\left.\right|_{1} ^{\prime \prime}$ health
NG_008376.3 2N

Gene
CYP2D6
CYP2C9
CYP2C19
SLCO1B1
CYP2B6
CYP3A5
CYP3A4

Phenotype Result
Normal Metabolizer
Normal Metabolizer
Rapid Metabolizer
Normal Function
Intermediate Metabolizer
Poor Metabolizer
Normal Metabolizer

[^0]: Thomas S. Alexander, Laboratory Director, PhD., D(ABMLI), CLIA

[^1]: 1: Pharmacogenetic testing may occasionally lead to unusual genotypes. In these situations pharmacogenetic laboratories will sometimes report on alternative genotypes. If this is done then both genotypes appear in the result table; a genotype in () is the alternative genotype chosen by the lab.

